Background
According to the World Health Organization, 7.4 million people died from ischaemic heart disease in 2012. This represents 15% of all global deaths. Patients with a heart attack but without heart failure may receive beta-blockers as non-acute treatment. Beta-blockers inhibit beta-receptors. This can result in a reduction in oxygen needed by the heart and may reduce complications associated with a heart attack.
Study characteristics
We searched scientific databases from their beginning to February 2021 and found 25 randomised clinical trials. People had the same chance to be allocated to groups receiving beta-blockers or control. In 21 trials, the control was a placebo. In four trials, the control was no intervention. Trials included 22,423 adults with mean age of 56.9 years (range 50 to 63 years).
Key results
Patients without heart failure after a heart attack receiving beta-blockers compared with placebo or no intervention probably have lower risk of death and of a new heart attack and may have reduced risk of major cardiovascular events and death of any heart-related cause, but likely not of angina pectoris. The effects of beta-blockers on serious adverse events and on quality of life were uncertain due to lack of data.
Certainty of evidence
The evidence should be interpreted with caution, as certainty was judged to be moderate to low for all outcomes. Reasons mainly include high risk of bias for all included trials, limitations in design and execution, and risk of random error. This means that results might overestimate the beneficial effects of beta-blockers and underestimate the harmful effects. Therefore, the above mentioned results may change in the future, after additional well-designed randomised clinical trials are conducted.
Beta-blockers probably reduce the risks of all-cause mortality and myocardial reinfarction in patients younger than 75 years of age without heart failure following acute myocardial infarction. Beta-blockers may further reduce the risks of major cardiovascular events and cardiovascular mortality compared with placebo or no intervention in patients younger than 75 years of age without heart failure following acute myocardial infarction. These effects could, however, be driven by patients with unrecognised heart failure. The effects of beta-blockers on serious adverse events, angina, and quality of life are unclear due to sparse data or no data at all. All trials and outcomes were at high risk of bias, and incomplete outcome data bias alone could account for the effect seen when major cardiovascular events, angina, and myocardial infarction are assessed. The evidence in this review is of moderate to low certainty, and the true result may depart substantially from the results presented here. Future trials should particularly focus on patients 75 years of age and older, and on assessment of serious adverse events according to ICH-GCP and quality of life. Newer randomised clinical trials at low risk of bias and at low risk of random errors are needed if the benefits and harms of beta-blockers in contemporary patients without heart failure following acute myocardial infarction are to be assessed properly. Such trials ought to be designed according to the SPIRIT statement and reported according to the CONSORT statement.
Cardiovascular disease is the number one cause of death globally. According to the World Health Organization (WHO), 7.4 million people died from ischaemic heart disease in 2012, constituting 15% of all deaths. Beta-blockers are recommended and are often used in patients with heart failure after acute myocardial infarction. However, it is currently unclear whether beta-blockers should be used in patients without heart failure after acute myocardial infarction. Previous meta-analyses on the topic have shown conflicting results. No previous systematic review using Cochrane methods has assessed the effects of beta-blockers in patients without heart failure after acute myocardial infarction.
To assess the benefits and harms of beta-blockers compared with placebo or no treatment in patients without heart failure and with left ventricular ejection fraction (LVEF) greater than 40% in the non-acute phase after myocardial infarction.
We searched CENTRAL, MEDLINE, Embase, LILACS, Science Citation Index - Expanded, BIOSIS Citation Index, the WHO International Clinical Trials Registry Platform, ClinicalTrials.gov, European Medicines Agency, Food and Drug Administration, Turning Research Into Practice, Google Scholar, and SciSearch from their inception to February 2021.
We included all randomised clinical trials assessing effects of beta-blockers versus control (placebo or no treatment) in patients without heart failure after myocardial infarction, irrespective of publication type and status, date, and language. We excluded trials randomising participants with diagnosed heart failure at the time of randomisation.
We followed our published protocol, with a few changes made, and methodological recommendations provided by Cochrane and Jakobsen and colleagues. Two review authors independently extracted data. Our primary outcomes were all-cause mortality, serious adverse events, and major cardiovascular events (composite of cardiovascular mortality and non-fatal myocardial reinfarction). Our secondary outcomes were quality of life, angina, cardiovascular mortality, and myocardial infarction during follow-up. We assessed all outcomes at maximum follow-up. We systematically assessed risks of bias using seven bias domains and we assessed the certainty of evidence using the GRADE approach.
We included 25 trials randomising a total of 22,423 participants (mean age 56.9 years). All trials and outcomes were at high risk of bias. In all, 24 of 25 trials included a mixed group of participants with ST-elevation myocardial infarction and non-ST myocardial infarction, and no trials provided separate results for each type of infarction. One trial included participants with only ST-elevation myocardial infarction. All trials except one included participants younger than 75 years of age. Methods used to exclude heart failure were various and were likely insufficient. A total of 21 trials used placebo, and four trials used no intervention, as the comparator. All patients received usual care; 24 of 25 trials were from the pre-reperfusion era (published from 1974 to 1999), and only one trial was from the reperfusion era (published in 2018). The certainty of evidence was moderate to low for all outcomes.
Our meta-analyses show that beta-blockers compared with placebo or no intervention probably reduce the risks of all-cause mortality (risk ratio (RR) 0.81, 97.5% confidence interval (CI) 0.73 to 0.90; I² = 15%; 22,085 participants, 21 trials; moderate-certainty evidence) and myocardial reinfarction (RR 0.76, 98% CI 0.69 to 0.88; I² = 0%; 19,606 participants, 19 trials; moderate-certainty evidence). Our meta-analyses show that beta-blockers compared with placebo or no intervention may reduce the risks of major cardiovascular events (RR 0.72, 97.5% CI 0.69 to 0.84; 14,994 participants, 15 trials; low-certainty evidence) and cardiovascular mortality (RR 0.73, 98% CI 0.68 to 0.85; I² = 47%; 21,763 participants, 19 trials; low-certainty evidence). Hence, evidence seems to suggest that beta-blockers versus placebo or no treatment may result in a minimum reduction of 10% in RR for risks of all-cause mortality, major cardiovascular events, cardiovascular mortality, and myocardial infarction. However, beta-blockers compared with placebo or no intervention may not affect the risk of angina (RR 1.04, 98% CI 0.93 to 1.13; I² = 0%; 7115 participants, 5 trials; low-certainty evidence).
No trials provided data on serious adverse events according to good clinical practice from the International Committee for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH-GCP), nor on quality of life.