Running shoes for preventing lower-limb running injuries in adults

Title

Do different types of running shoes change the risk of developing a lower-limb injury?

Key messages

Neutral/cushioned shoes may make little or no difference to the number of runners sustaining injuries or footwear satisfaction compared with minimalist shoes.

It is uncertain if motion control shoes reduce the number of runners sustaining injuries compared with neutral/ cushioned shoes.

Soft midsole shoes may make little or no difference to the number of runners sustaining injuries compared with hard midsole shoes.

It is uncertain if stability shoes reduce the number of runners sustaining  injuries compared with neutral/cushioned shoes.

It is uncertain whether or not motion control shoes reduce the number of runners sustaining a lower-limb running injuries when compared with stability shoes.

Prescribing running shoes and selecting on foot posture probably makes little or no difference to running injuries

Future researchers should develop a consensus definition of running shoe design to help standardise classification. The definition of a running injury should be used consistently and confirmed via health practitioners. Researchers should consider a randomised controlled trial design to increase the evidence in this area and explore the influence of different types or running shoes upon injury rates in specific subgroups.

Running shoes and running injuries

Running shoes are designed with features that look to reduce foot motion or how much force is applied to the body, with a view to reducing running-injury risk. Based upon their design features running shoes may be broadly classified as; motion control, stability or neutral/cushioned and as minimalist if they look to provide little movement control or cushioning features.

What did we want to find out?

We wanted to find out:

whether different types of running shoes could reduce the risk of developing lower-limb running injuries

whether prescribed running shoes could reduce the risk of developing lower-limb running injuries compared to non-prescribed running shoes

What did we do? 

We searched for studies that compared running-injury rates (number of runners injured or total number of injuries) between groups of runners or military personnel who wore different types of running shoes.

We compared and summarised their results, and rated our confidence in the evidence, based on factors such as study methods.

What did we find? 

We found 12 studies, nine of which assessed leisure or recreational runners and three in military populations. A total of 11,240 participants were included across all studies, with the largest study including 3952 participants and the smallest 24. The following comparisons were made.

- Neutral/ cushioned compared to minimalist running shoes (5 studies, 766 participants)

- Motion control compared to neutral/ cushioned running shoes (2 studies, 421 participants)

- Soft compared to hard running shoes (2 studies, 1095 participants)

- Stability compared to neutral/ cushioned running shoes (1 study, 57 participants)

- Motion control compared to stability running shoes (1 study, 56 participants)

- Prescribed compared to non-prescribed running shoes (3 studies, 7203 participants)

The studies did not use the same definition of injury and some used definitions of injury that included injuries to parts of the body other than just the lower limb.

Main results 

We found the following within our review.

Neutral/cushioned shoes may make little or no difference to the number of runners sustaining a lower-limb running injuries or runner satisfaction with footwear when compared with minimalist shoes (low-certainty evidence).

It is uncertain whether or not motion control shoes reduce the number of runners sustaining lower-limb running injuries when compared with neutral/cushioned shoes because the certainty of the evidence was very low.

Soft midsole shoes may make little or no difference to the number of runners sustaining lower-limb running injuries when compared with hard midsole shoes (low-certainty evidence).

It is uncertain whether or not stability shoes reduce the number of runners sustaining lower-limb running injuries when compared with neutral/cushioned shoes because the certainty of the evidence was very low.

It is uncertain whether or not motion control shoes reduce the number of runners sustaining lower-limb running injuries when compared with stability shoes because the certainty of the evidence was very low.

Prescribing running shoes and selecting on foot posture probably makes little or no difference to lower-limb running injuries (moderate-certainty evidence).

What are the limitations of the evidence?

We were moderately confident in the evidence from studies comparing prescribed and non-prescribed running shoes, but this evidence was limited by the fact participants knew what types of running shoes they were receiving.

We have little confidence in the evidence that compared different types of running shoes as the participants often knew what type of running shoe they were receiving, the number of participants taking part in the study were small and there were often not enough studies comparing each type of running shoe with another. 

How up to date is this evidence?

The evidence is up to date to June 2021.

Authors' conclusions: 

Most evidence demonstrates no reduction in lower-limb running injuries in adults when comparing different types of running shoes. Overall, the certainty of the evidence determining whether different types of running shoes influence running injury rates was very low to low, and as such we are uncertain as to the true effects of different types of running shoes upon injury rates.

There is no evidence that prescribing footwear based on foot type reduces running-related lower-limb injures in adults. The evidence for this comparison was rated as moderate and as such we can have more certainty when interpreting these findings. However, all three trials included in this comparison used military populations and as such the findings may differ in recreational runners. 

Future researchers should develop a consensus definition of running shoe design to help standardise classification. The definition of a running injury should also be used consistently and confirmed via health practitioners. More researchers should consider a RCT design to increase the evidence in this area. Lastly, future work should look to explore the influence of different types or running shoes upon injury rates in specific subgroups.

Read the full abstract...
Background: 

Lower-limb running injuries are common. Running shoes have been proposed as one means of reducing injury risk. However, there is uncertainty as to how effective running shoes are for the prevention of injury. It is also unclear how the effects of different characteristics of running shoes prevent injury.

Objectives: 

To assess the effects (benefits and harms) of running shoes for preventing lower-limb running injuries in adult runners.

Search strategy: 

We searched the following databases: CENTRAL, MEDLINE, Embase, AMED, CINAHL Plus and SPORTDiscus plus trial registers WHO ICTRP and ClinicalTrials.gov. We also searched additional sources for published and unpublished trials. The date of the search was June 2021.

Selection criteria: 

We included randomised controlled trials (RCTs) and quasi-RCTs involving runners or military personnel in basic training that either compared a) a running shoe with a non-running shoe; b) different types of running shoes (minimalist, neutral/cushioned, motion control, stability, soft midsole, hard midsole); or c) footwear recommended and selected on foot posture versus footwear not recommended and not selected on foot posture for preventing lower-limb running injuries. Our primary outcomes were number of people sustaining a lower-limb running injury and number of lower-limb running injuries. Our secondary outcomes were number of runners who failed to return to running or their previous level of running, runner satisfaction with footwear, adverse events other than musculoskeletal injuries, and number of runners requiring hospital admission or surgery, or both, for musculoskeletal injury or adverse event.

Data collection and analysis: 

Two review authors independently assessed study eligibility and performed data extraction and risk of bias assessment. The certainty of the included evidence was assessed using GRADE methodology.

Main results: 

We included 12 trials in the analysis which included a total of 11,240 participants, in trials that lasted from 6 to 26 weeks and were carried out in North America, Europe, Australia and South Africa. Most of the evidence was low or very low certainty as it was not possible to blind runners to their allocated running shoe, there was variation in the definition of an injury and characteristics of footwear, and there were too few studies for most comparisons.

We did not find any trials that compared running shoes with non-running shoes.

Neutral/cushioned versus minimalist (5 studies, 766 participants)

Neutral/cushioned shoes may make little or no difference to the number of runners sustaining a lower-limb running injuries when compared with minimalist shoes (low-certainty evidence) (risk ratio (RR) 0.77, 95% confidence interval (CI) 0.59 to 1.01).

One trial reported that 67% and 92% of runners were satisfied with their neutral/cushioned or minimalist running shoes, respectively (RR 0.73, 95% CI 0.47 to 1.12). Another trial reported mean satisfaction scores ranged from 4.0 to 4.3 in the neutral/ cushioned group and 3.6 to 3.9 in the minimalist running shoe group out of a total of 5. Hence neutral/cushioned running shoes may make little or no difference to runner satisfaction with footwear (low-certainty evidence).

Motion control versus neutral / cushioned (2 studies, 421 participants)

It is uncertain whether or not motion control shoes reduce the number of runners sustaining a lower-limb running injuries when compared with neutral / cushioned shoes because the quality of the evidence has been assessed as very low certainty (RR 0.92, 95% CI 0.30 to 2.81).

Soft midsole versus hard midsole (2 studies, 1095 participants)

Soft midsole shoes may make little or no difference to the number of runners sustaining a lower-limb running injuries when compared with hard midsole shoes (low-certainty of evidence) (RR 0.82, 95% CI 0.61 to 1.10).

Stability versus neutral / cushioned (1 study, 57 participants)

It is uncertain whether or not stability shoes reduce the number of runners sustaining a lower-limb running injuries when compared with neutral/cushioned shoes because the quality of the evidence has been assessed as very low certainty (RR 0.49, 95% CI 0.18 to 1.31).

Motion control versus stability (1 study, 56 participants)

It is uncertain whether or not motion control shoes reduce the number of runners sustaining a lower-limb running injuries when compared with stability shoes because the quality of the evidence has been assessed as very low certainty (RR 3.47, 95% CI 1.43 to 8.40).

Running shoes prescribed and selected on foot posture (3 studies, 7203 participants)

There was no evidence that running shoes prescribed based on static foot posture reduced the number of injuries compared with those who received a shoe not prescribed based on foot posture in military recruits (Rate Ratio 1.03, 95% CI 0.94 to 1.13). Subgroup analysis confirmed these findings were consistent between males and females. Therefore, prescribing running shoes and selecting on foot posture probably makes little or no difference to lower-limb running injuries (moderate-certainty evidence).

Data were not available for all other review outcomes.